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Effect of simple stress on the glass transition of 
polymers at high pressures 
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Science, Rutgers University, PO Box 909, Piscatway, New Jersey 08854, USA 

Experimental studies, which have been carried out in this laboratory, showed the yield 
strength in tension, compression, and shear in the rubbery and the glassy states increased with 
increasing hydrostatic pressure. Moreover, the Young's modulus also increased with pressure 
and the amount of the increase across the glass transition temperature (Tg) at a given pressure 
can be as large as three orders of magnitude in the case of elastomers. An extension of the 
Gibbs-Dimarzio theory is proposed to account for the effect of applied stress on the glass 
transition temeprature of glass-forming polymers. When a simple stress, such as tensile, com- 
pressive or shear stress, is applied to a polymer, the Tg will decrease, compared to a polymer 
without applied stress. A glass-forming polymer in the vicinity of the transition would behave 
differently from that predicted by rubber elasticity. The partition function taking into account 
the effect of stress is suggested to be 

F = s no) exp [ - f l (PV  + U -  o-V~)] 

where the strain ~ = ~ (f - f0) in which f and f0 are the fraction of flexed bonds with and 
without stress, respectively. Furthermore, by this model, the Young's modulus across the tran- 
sition, E, and E G, can be evaluated. The Young's modulus increases with increasing pressure 
at lower and moderate pressure range but the increase is rather small at very high pressure 
range. 

1. I n t r o d u c t i o n  
Experimental studies have been carried out in this 
laboratory in the last several years on the effect of 
hydrosatic pressure on tensile, compressive and shear 
stress-strain behaviour of polymers, including elas- 
tomers in the rubbery and the glassy states [1-10] as 
shown in Fig. 1. It was observed in all polymers tested 
that yielding occurred under all three stress conditions 
and the yielding strengths increased with increasing 
pressure. It was also observed that the Young's modu- 
lus and the shear modulus increased with increasing 
pressure and underwent abrupt changes across glass 
transition pressure (Pg). In particular, the change is as 
much as three orders of magnitude in the case of 
elastomers. We adopt the hypothesis that yielding 
occurs as the result of lowering of the glass transition 
temperature (Tg) due to the applied load [7]. A similar 
concept is employed in free volume theories of yield- 
ing [11, 12], that is, yielding occurs if the free volume 
fraction reaches a certain value. Under a simple com- 
pressive stress, for instance, the free volume fraction 
increases as a result of decrease in the total volume 
under the compressive stress. 

In this study, the effect of tensile, compressive and 
shear stress on the glass-transition behaviour of glass- 
forming polymers and its related properties are 
investigated on the basis of the Gibbs-Dimarzio 

(G-D) theory which is based on the statistical mech- 
anics [10, 13-17]. The G - D  theory takes into account 
specific configurations of polymers, making it possible 
to express the thermodynamic quantities as a function 
of molecular parameters, such as flexed energy, ~, hole 
energy Eh, coordination number z, degree of poly- 
merization Z, etc. In addition, it is also a function of 
an intensive parameter of the system, temperature T 
[13, 14]. The extension of the theory to incorporate the 
effect of pressure, P,  was accomplished by use of 
"isothermal-isobaric" partition function of the sys- 
tem. The Gibb's free energy can then be obtained in 
terms of the internal parameters, f and no, and the 
intensive parameters T and P [15], where f is the 
fraction of flexed bonds and no is the number of unoc- 
cupied sites. According to the theory, the second order 
transition temperature T 2 corresponding to zero con- 
figurational entropy increases with increasing pressure 
but approaches a finite asymptotic value at very high 
pressures. 

From the thermodynamic considerations, it has 
been shown that for the iso-~ l plane (a "special glass" 
formed under pressure P1) the transition line in the 
STP space is given by [10] 

dP dT dS 
A C p  - V T A ~  - (~I~Cec - ~ C e L )  V (1) 
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In the G - D  theory, bothfand no are assumed frozen-in 
when cooled down along an isobar to the glassy state 
[15]; therefore "G = 0, Ce~ --- 0 and we have 

d T V T A a  
- ( 2 )  

d P  A C  e 

only when dS = 0. Owing to the argument that 
Equation 2 holds for an iso-~ transition, this result 
indicates that the iso-~ transition stems from a con- 
stant entropy process. Moreover, allowing for a vari- 
ation of the flex energy, A~, for glasses formed at 
different pressures, a better agreement between the 
experimental data and theoretical prediction has been 
achieved [10]. 

The effect of tensile, compressive and shear stress 
superimposed on hydrostatic pressure on the tran- 
sition temperature will be determined by further modi- 
fying the Gibbs-Dimarzio theory. The Young's modu- 
lus (E) can also be calculated at various pressures and 
temperatures. 

2. Theory 
2.1. Fundamental detail 
In the G - D  theory, a polymer chain is cut into seg- 
ments, each of which occupies one site of the lattice. 
For the liquid state, the configurational entropy SL (T) 
of a system of n~ polymer molecules with x segments 
and no empty sites related to the number of possible 
configurations, W(f, no), may be written as [10] 

SL = k l n W  

=k.x  - lnS0+ lnK 
lnSx In {[(z/2-  1)x + 1 ] ( z -  1)} 

_ _  _ _  7 1 -  

x x 

+ ( ~ - - - ~ ) { f l n  [ - (z -  2)(lf - f ) - ] - l n ( l - f ) } )  

(3) 

where k is Boltmann's constant, T the absolute 
temperature, V0 = no/(Xnx + no), Vx = 1 - Vo, So = 

zno/{[(z - 2)x + 2]nx + zno}, Sx = 1 - So, a n d f  
the fraction of flexed bonds with rotational isomerism 
(RI) approximation [13] assumed. 

The usual thermodynamic theories of simple liquid 
bodies specify their state by the volume only; whereas 
in the case of a solid body besides the volume the 
shape is also taken into account and specified by six 
components of strain tensor. In as much as no distinc- 
tion of a qualititative character can be made between 
as solid amorphous body, i.e. a supercooled liquid 
which is usually considered a metastable state, and a 
liquid in a state of absolute thermodynamical equili- 
brium, it is clear that dealing with such a liquid we are, 
on the one hand, entitled to make statistical thermo- 
dynamics calculations and, on the other, compelled to 
take into account not only the volume variation but 
also the complete strain tensor associating the latter 
with the corresponding elastic stress [18]. 

The Euler's relation for a system of continuous 
medium is given by [19] 

U = T S  + laN + VoT~je ~ (4) 
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Figure 1 Tensile stress plotted against stretch for solithane 113 at 
various pressures. 

where V0 is the volume of the system in some fiducial 
state, 7~ Piola-Kirchoff stress tensor, and e ~ the 
Lagrangian strain tensor. Equation 4 may also be 
written, by transforming the deformation energy term 
to Eulerian representation [20] 

U = T S  + # N  + Vtu~ ~ (5) 

in which, t o. and ea represent, respectively, the Cauchy 
stress tensor and Eulerian strain tensor. The strain 
energy term in Equation 5 represents the energy 
produced by all possible combinations of stresses. 

When a tensile stress a (or ax),  a compressive stress 
ac, or a shear stress v, is applied to the system, the term 
Vt~e o in Equation 5 reduces, respectively, to 

U = T S -  P V +  aVe  + # N  (6) 

Uc = T S -  P V c  + acVcec  + # N  (7) 

Us = T S  - P V  s + vVs7 + #N (8) 

With regard to the G - D  theory under the RI approxi- 
mation, the energy of a system is [15] 

U = �9 + nx(x  - 3)[f~2 + (1 - f ) E l ]  (9) 

where �9 is the hole energy, e2 and el the higher and 
lower energy level, respectively, and f the fraction of 
segments at ~2. 

When a loading is applied to a glass forming poly- 
mer, either in tension, compression or shear, a certain 
amount of work will be done on it. In the vicinity of 
its transition, the polymer system may absorb this 
work to increase its energy. This prediction is unlike 
the situation of a polymer in highly rubber-elastic 
state that it does not incur any energy change when 
stretched but behaves as the so-called entropy spring 
[21]. As far as the RI approximation is concerned, 
ignoring the change of the hole energy part, r on 



account of a negligible variation of volume, the 
absorbed energy may increase the fraction of  segments 
in the higher energy level. Representing these fractions 
with and without load by f and f0, we have the energy 
increase, A U, as 

AU ~ fE 2 + (1 - f )E ,  -- f0E2 - -  (1 -- f0) el 

= 0c--f0)(e2 - el) = AfAE (10) 

Equation 10 gives a clue to express the tensile strain 
energy in Equation 6 by ~aV(f  - fo). In other words, 

AL 
e = ~ 0  c -  f0) -- (11) 

L 

As has been noted for Equations 6 and 9, the intro- 
duction of the effect of  tensile stress into G - D  theory 
can be achieved by means of  an "isothermal isobaric- 
isotensile" partition function of the form 

F = Zf.noW(f, no)exp{--  f l [ P V +  U(f,  no) - aVe]} 

= E W e x p  { -  fl [PCNo + U - a C N o ~ ( f -  fo)]} 

(12) 

Through the Legendre's transformation [19], we 
obtained the Gibb's free energy associated with F by 

G(T, P, a) = U[T, P, a] = pN = U +  P V  

- a V e -  TS = - kT/nF (13) 

The summation over f and no in Equation 12 can be 
replaced by their maximum values without intro- 
ducing detectable errors in the logarithm of  F [22]. 
The maximum terms can be obtained by differentiat- 
ing with respect to f and no as, 

0lnW OU ( afo'] = 0 (14) 
(~t f l - -~  + flaCN~ 1 -- Of/ 

Ono 
_ _ c 3 1 n  W _ fl ~OU _ f l P C  + f l a C ~ ( f  - fo )  = 0 (15)  

For  solving Equation 14, the successive approxi- 
mation technique is employed. As the first approxi- 
mation, assuming Ofo/af = 0 in Equation 14, we get 
an equation for fmax (later denoted by f )  

fm~x = ( z  - 2)  
1 - fm.x 

x exp l - - - ( e2 - -  el) + a C N ~  3)n~- ] 
k r  (16) 

o r  

f =  
(z -- 2 ) e x p [ - A 6  + aCNo~/(x -- 3)nx/kT] 

1 + (z -- 2 ) e x p [ - A e  + aCNo~/(x - 3)G/kT]  

AB 
(17) 

1 + A B  

where A = ( z - -  2) e x p ( - A e / k T )  and B = exp 
[aCNor  3)GkT].  Nevertheless, the f0 for the 

fiducial state, when the tensile load is released, should 
be 

(z -- 2) exp ( - -A~/kT)  A 
fo = = - -  (18)  

1 + ( z  - -  2)exp  ( - A e / k r )  1 + A 

Combining Equations 17 and 18 and differentiating, it 
can be shown that 

Of~ - ( - l - l +  -+ A J B ABe2 1 (19) 

Substituting Equation 19 for ~fo/Ofin Equation 14 as 
the second approximation, we have 

AB~ 
f - (20) 

1 + AB 1 

where 

f aCUor I 1 _ ( 1 + A 8 ~  
BI = exP [ k T ( x _  3) G 1 ~ - j  13} 

Equation 15 yields an implicit equation for (no) . . . .  
i.e., 

In (VoZ/2-'/S~ 2) __ ~_~ S2x - -  - -  

f fCT{T(f -- fo) + = 
k T  

E h  2 In ( V o Z / 2 - 1 / S ~  2 )  _ k ' T  S z _ _ _  

+ a c C c ~ c ( f -  f0) = 0 
k T  

PCr 
k T  

0 

POe 
k T  

E h  2 PCs 
In (V0 ~/2 1/SoZ-2) - ~ S/, k T  

+ rcs~s( f  - fo) = o 
k T  

where CT, Cc and Cs are the unit cell dimensions 
under tensile, compressive and shear stresses, respect- 
ively. Or, in a dimensionless form, 

Sx 2 Pe O'e 
In (VoZ/2-l /So-2) TeEe Te + ~ ( f  -- fo) 

where 

Pe (for tensile stress) 

- -  O" e , 

= 0 

(22) 

aC~ PC 
A E  - a e ,  A--e = 

r  
AE 

PCc 
AE 

- Pc (for compressive stress) 

r Cs ~s PCs 
- Pe (for shear stress) 

Ae ae' AE 

AE S L k T nx 
- E c, = S, - -  = Te, - -  = n 

E h kN, AE no 

(23) 

With the dimensionless groups introduced as in 
Equation 23, Equations 3 and 17 to 20 are also con- 
verted to dimensionless forms and a single plot of 
Equation 22, as shown in Figs 2 and 3, was made 
possible for each of three stress conditions because of  
the dimensionless quantities o-o and Pe. From these 
dimensionless equations, the Te against Pe curves of  
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Figure 2 Theoretical curves of Tr against P~ with S = 0 and 
a~ = 0.0001, 0.1, 0.2, 0.3, 0.4, 0.5 based on first approximation. 

the equilibrium transition lines under infinitely slow 
cooling rate (S = 0) are produced with 0.~ = 
0.000001, 0.1, 0.2, 0.3, 0.4 and 0.5 and plotted in 
Fig. 2 (for first approximation) and Fig. 3 (for second 
approximation). Values of  z, x and E~ are taken, 
respectively, to be 4, 1640, 0.945 for polystyrene [11]. 
The discrepancy between the two approximations is 
not remarkable for low 0.e values and with regard to 
the first approximation,  the decrease of  Te is supposed 
to be linearly related to the increase of  stress as 
T = 0.5 (1 - 0.~). T~ against P, curves with S not 
equal to zero can also be produced [10] but, for non- 
equilibrium transition, the the glass formed will con- 
tinuously relax toward the equilibrium state with a 
rate depending upon the relaxation time [23]. 

The yield stress % in Equation 22 assumes the same 
value given under the same condition of T~ and 
P~ = 0 (atmospheric condition) and, therefore, we 
obtain 

0-CTr T = 0-cCc ~C = ~'Cs~ S 

0.2 0.2 %2 
-~cT = ~-c~  = ~Cs 

0.r 
/ - - I  

0. F. ~T \ C c J  (24) 

in which a linear elastic behaviour with ET = Ec = E 

0.58 
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is assumed. I f  the pressure-dependent yield criterion 
proposed by Pae [3] is adopted, we obtain 

CT 2(1 + v) ~ ai 
C 

Cc _ fl/3 '/~ + al]2 

where C --- C s (no volume change under shear load- 
ing) and a~ a material constant. I f  v = 0.42 and 
al = - 0 . 0 2 3  are used, CT = 1.024C, Cc/C T = 
0.825, ~C/~T = 1.08 and Cs/~T = 1.574 are obtained. 

2.2. Evaluat ion of  the Y o u n g ' s  m o d u l u s  
We have been carrying out experimental studies on the 
s tress-strain behaviour of  elastomers at high press- 
ures for the last several years [6, 7, 24]. The elastomers 
studied include a polyurethane elastomer, Solithane 
113, with Tg = - 20 ~ C. The stress-strain measure- 
ments were made as a function of pressure, tem- 
perature and ageing time under a constant rate 
(0.02min-~), as in Figs 1 and 10. Some of  these 
tests were carried out under glassy state and some in 
the rubbery state, or a "sol id- l ike liquid" state or 
solid amorphous  body whatever it is termed. F rom the 
s tress-strain curves, we were able to determine the 
Young's  modulus. It  is true that the material behaves 
in a viscoelastic manner.  However, the solid amorph-  
ous bodies are distinguishable from ordinary liquids 
by their relatively longer relaxation time [18]. E is 
measured for given conditions of  experiment, such as 
P, T, stain rate, and under proper assumptions, such 
as ignoring time effect like creep and stress relaxation 
during the short time period of the test. 

The Young's  modulus of  the liquid is defined by 

c~ ( f  -- f0) 
= r 00- (25) 

in which, from Equations 17 and 18 

Of [ CNor 
~0- - f (1  - f )  LkT( x - ~ ) n x  

0.4 v~ va0-) UoC ] 
+ j (26) 
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Figure 3 (a) Theoretical curves of T e against P~ with S = 0 and tr~ = 0.00000l, 0.1, 0.2, 0.3, 0.4, 0.5 based on second approximation. (b) 
To against Pe curves on Fig. 2 with scale enlarged; ae = 0.05, 0.075, 0.1. 
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Figure 4 Incipient Young's modulus of glass (Eo~) and liquid (ELe) 
plotted against Pe with a~ = 0.3. 

- - =  0 (27) Oa 

Furthermore,  they are coupled with another deriva- 
tive 

1 ~v voc~ 
V #a k T  

~ (f_ -- fo) + a[O( f  -- f0)/Sa] 
• t(z/2)s  - -  - l )  

(28) 

For  evaluating Young's  modulus of  glass, we 
propose two stages of  calculation. Firstly, consider a 
second order transformation,  

T,a ,a 

along the transition line, we have V L = Va, SL = Sa, 
and (Ve)L = (Ve)a, therefore, eL = e~ or d~L = de~ 
This leads to 

(OeL '] (OeL~ da  (~eG'] 
OT/-- 'v.o dT  + = dT  \ ~a ]~,Tg \ OT/e,o 

+ (~e~'~ do- (29) 

Assuming the rate of  variation of e~ with respect to T 
just across the transition equal to zero because of the 
freezing-in of  internal parameters,  i.e. (Oe~/OT)e,~ = 0 
and defining 

1 (a~G~ 

2.25 - 

2.17 

2.08 
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0 I 

%= 0.I 

,% 

! 
6 7 

t,u ~ 2 4 2 4 - - - ~ - - - - -  %=0,2 i 
Figure 6 EGe(ELe) plotted against P~ with ae = 0.2. 

through Equation 25 one finds 

d T  _ ( 1  1 ) / ~  

da \EG E L J / 3 T  

(1 
Thermodynamic calculations of  dT/da and ~ ( f  - )co)/ 
OT are given in the Appendix. This enables us to 
obtain E~ from EL. 

Introducing more dimensionless groups as 

1 Ae 1 Ae 
Et~ = C~:EL' E G e -  C~2E~ (31) 

the above equations may be normalized and the curves 
of  EL~ against Pc and EG~ against Pc are produced as 
shown by Figs 4 to 6. 

However, the EG so far obtained is the result of  an 
"incipient transition" from EL, since just across the 
secondary transition, eo is supposed equal to eL, i.e. 
~ = ~L = ~ ( f  -- f0)- This is because both ~c and e L 
are estimated on the basis of  a liquid. In fact, below 
the secondary transition, the glass with the constant V 
and S continues to undergo a change in e~ until it 
reaches ~(fo - fGo)  which is calculated on the basis of  
a glass. The strain o f ~  glass e G = ~(f~ - fc, o) can be 
clearly illustrated using Fig. 7 as 

f ~  = f c  [P, a, 7"] = f[Tg(P, a), a, P] 

fc, o = f~o[Tg(  P, a), a, PI  = f[Tg(P), P] 

That  is ,f~ is equal to the fraction of  the flexed bonds 
at the transition temperature T z under pressure P and 
tensile stress a, whereas the f~0 is the fraction at Tg 

under the same pressure P but with a approaching 
zero. In other words, fo  = f ,  but f~0 for the glassy 
state with stress removed is different from f0 for the 
rubbery state without stress, which must be calculated 
using Equation 18, so that the strain may decrease from 

( f  - f0) to ~ ( f  - fc0) = ~ ( f  - f ~ 0 )  in the amount  

] 
o 

P 

Figure 5 Eo~(EL, ) plotted against Pe with % = 0.1. Figure 7 Schematic iso-tensile stress surfaces in STP space. 
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Figure 10 Young's modulus of solithane 113 plotted against tem- 
perature at various pressures. 

of several decades, whose ratio 

f - L  r  
f - L~o 

is pressure dependent as shown by the curve In ~b 
against Pe in Fig. 8. 

The Young's modulus based on the strain of glassy 
state is defined by 

1 & 0 ( f  - -  fc-0) 
- = { ( 3 2 )  

in which, af/t?r adopts the same formula as Equation 
26 and 

(~0" , ~ 0  

CNo  
= L o(1 - L o) kT  o(X - 3)nx 

We denote this ultimate modulus of glass by E'G and 
the dimensionless parameter associated with it by 
E'a~. As observed in Solithane 113, the Young's 
modulus increased with about three orders of  mag- 
nitude across transition [17]. From Figs 4 to 6, we see 
that EGe and EL~ are of the same magnitude. However, 
in Fig. 9, it turns out that E'Ge is greater than EL~ by 
such an order of magnitude and E'Ge increases about 
three times with the pressure Pe increasing from 0 to 

302.25 

251.66" 

"b,j~ 201,50- 

151.13- 

101.75- 

50.98 
-0.05 

// 

0)6 2. 7 s.b s. 6 4)6 
p, 

Figure 9 Young's modulus of glass (Ec~) plotted against (Pc). 
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5.59 

4. This result is comparable with experimental data on 
Solithane 113 in Fig. 10. 

3. Glass yielding 
It is well known that the glass transition is reduced 
under a tensile stress tr [25] and experimentally the 
deformation of a glass formed without a tensile stress 
at a temperature below Tg will be elastic at small 
strain, then followed by a yield point and plastic 
deformation, which is similar to the deformation in 
the rubbery state [7]. The yield point under tension is 
essentially a strain or stress-induced glass transition 
[26, 27]. Yielding under compressive and shear stresses 
are naturally predicted by the modified G - D  theory 
developed in this paper since the strain energy 
increases, whatever the stress state is, tension, com- 
pression or shear and, consequently, the glass tran- 
sition temperature decreases. 

In Fig. 2, where Te against Pe for various ae are 
plotted, we consider schematically a polymer at cer- 
tain temperature T~ and pressure Pi in the glassy state 
with the reference (transition) line a = 0. This point 
represents the state of  glass which was formed at 
pressure Pi without applied stress and is further cooled 
to Ti in the glassy state. When a tensile, compressive 
or shear stress is applied to this glass, the reference 
line or the transition line (T e against P~ with trr ~ 0 
itself) will shift downward. If the stress is increased 
and the stretch is carried on at an infinitely slow rate 
(a quasi-static loading), the glass yields at a = ai, 
which corresponds to the stress-induced transition. If  
the stress is increased at a rate higher than an infinitely 
slow rate, the glass will yield at a = ay > ai as shown 
in Figs 1 and 2. 

As a result of the fact that all curves in Figs 2 and 
3 are produced with S -- 0 corresponding to a glass 
transition at T2 which is about 50 ~ C below Tg [15], the 
dimensionless Young's modulus in Figs 4-6 ,  9 is 
also produced on this basis. However, configurational 
entropies will take on some value for most experi- 
mental situations where the cooling rate or the loading 
rate is greater than the infinitely slow rate. Conse- 
quently, transition occurs with S not equal to zero. 
The Young's modulus associated with S ~ 0 can be 
produced [10], adopting the same calculation 
procedure. 
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in which, a ( f -  fo) /aT is evaluated by differentiating 
Equations 17 and 18 as 

af  _ f(1 - f )  f !TaC~N~ - 3)nx] 
aT t 

afo A~ 
aT - fo(1 - f0) k T  2 (A3) 

The configurational heat capacity of the liquid is 

T(0 L) CpL = \ aT]p,. 

o~. + Ae -- [aCNo~/(x -- 3)nx]'{ 
(A2) 

k T  2 

= nx. EhS~ + PC -- a C ~ ( f - f o )  

(A4) 

Based on the G - D  theory, in the glassy state, f and 
n o being kept constant with temperature, both Cpo and 
aG vanish. The variation of the transition temperature 
Tg with tensile stress can be obtained by 

as  a s  

Considering a and V e  are mutually conjugated inten- 
sive and extensive quantities in the term a V e  of 
Equation 13 we have 

t•T,P 
Thereby, 

,p = L a T  j,,, c , , .  

(ae  av) 
_ T V - ~ - - T + e  

T [ a ( f - - f o )  
- C p , ~  N~ aT 

+ ~ ( f  - f0)NoC~L] (A7) 

The dimensionless parameters for ~e and Ce are 

= [ a(Ve)] (A6) 
L~Jo,p 
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